Background: Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. The interindividual genetic variations in drug metabolizing enzymes and DNA repair genes influence the efficacy and toxicity of numerous chemotherapeutic drugs affecting the treatment outcome.
Aim of the work: The aim of the study was to investigate the impact of drug metabolizing CYP1, GSTP1 and DNA repair (XRCC1) genes polymorphisms on the toxicity and response to chemotherapy in childhood ALL.
Patients and methodology: Ninety seven ALL pediatric patients were genotyped for CYP1A1, GSTP1 ILe105Val and XRCC1 Arg194Tryp single nucleotide polymorphisms (SNPs) using PCR-RFLP.
Results: No statistically significant differences were observed between the wild and variant (homozygous and heterozygous) genotypes of the polymorphisms studied in CYP1A1, GSTP1 or XRCC1 genes regarding age, total leukocyte count, immunophenotyping, cytogenetic or risk group. The SNPs in CYP1A1, GSTP1 and XRCC1 genes did not show significant association with complete remission (CR) rate, overall survival (OS) or event free survival (EFS). However, XRCC1 Arg194Trp SNP was associated with higher drug toxicity; carriers of variant genotypes (CT and TT) had a significantly higher frequency of myelosuppression compared to those with the wild CC genotype (21/43[48.8%]) compared to (14/54[25.9%]) (p=0.020). The analysis of the combined effect of studied SNPs did not show any significant association with patient outcome.
Conclusion: Our study reported a significant association between the DNA repair gene polymorphism and myelosuppression in childhood ALL patients. Adjustment of the dose of chemotherapeutic agents according to XRCC1 Arg194Trp polymorphism may improve outcome in cases with risk of toxicity.
Keywords: ALL; CYP1A1; GSTP1; Toxicity; XRCC1.
Copyright © 2017 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.