In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link?

Biotechnol Adv. 2017 Nov 15;35(7):889-904. doi: 10.1016/j.biotechadv.2017.08.003. Epub 2017 Aug 26.

Abstract

One of the unmet challenges in nanotechnology is to understand and establish the relationship between physicochemical properties of nanoparticles (NPs) and its biological interactions (bio-nano interactions). However, we are still far from assessing the biofate of NPs in a clear and unquestionable manner. Recent developments in the area of bio-nano interface and the understanding of protein corona (PC) has brought new insight in predicting biological interactions of NPs. PC refers to the spontaneous formation of an adsorbed layer of biomolecules on the surface of NPs in a biological environment. PC formation involves the spatiotemporal interplay of an intricate network of biological, environmental and particle characteristics. NPs with its PC can be viewed as a biological entity, which interacts with cells and barriers in a biological system. Recent studies on the bio-nano interface have revealed biological signatures that participate in cellular and physiological bioprocesses and control the biofate and toxicity of NPs. The ability of in-vitro derived parameters to forecast in-vivo consequences by developing a mathematical model forms the basis of in-vitro in-vivo correlation (IVIVC). Understanding the effect of bio-nano interactions on the biological consequences of NPs at the cellular and physiological level can have a direct impact on the translation of future nanomedicines and can lead to the ultimate goal of developing a mathematical IVIVC model. The review summarizes the emerging paradigms in the field of bio-nano-interface which clearly suggests an urgent need to revisit existing protocols in nanotechnology for defining the physicochemical correlates of bio-nano interactions.

Keywords: Bio-nano interface; Cell uptake; IVIVC; Inflammation; Nanoparticles; Physicochemical property; Protein corona; Targeting.

Publication types

  • Review

MeSH terms

  • Humans
  • Nanomedicine / trends*
  • Nanoparticles / chemistry*
  • Nanoparticles / therapeutic use
  • Nanotechnology / trends*
  • Protein Corona / chemistry*

Substances

  • Protein Corona