Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome characterized by overwhelming immune activation. A steroid and chemotherapy-based regimen remains as the first-line of therapy but it has substantial morbidity. Thus, novel, less toxic therapy for HLH is urgently needed. Although differences exist between familial HLH (FHL) and secondary HLH (sHLH), they have many common features. Using bioinformatic analysis with FHL and systemic juvenile idiopathic arthritis, which is associated with sHLH, we identified a common hypoxia-inducible factor 1A (HIF1A) signature. Furthermore, HIF1A protein levels were found to be elevated in the lymphocytic choriomeningitis virus infected Prf1-/- mouse FHL model and the CpG oligodeoxynucleotide-treated mouse sHLH model. To determine the role of HIF1A in HLH, a transgenic mouse with an inducible expression of HIF1A/ARNT proteins in hematopoietic cells was generated, which caused lethal HLH-like phenotypes: severe anemia, thrombocytopenia, splenomegaly, and multi-organ failure upon HIF1A induction. Mechanistically, these mice show type 1 polarized macrophages and dysregulated natural killler cells. The HLH-like phenotypes in this mouse model are independent of both adaptive immunity and interferon-γ, suggesting that HIF1A is downstream of immune activation in HLH. In conclusion, our data reveal that HIF1A signaling is a critical mediator for HLH and could be a novel therapeutic target for this syndrome.
Copyright© Ferrata Storti Foundation.