Prion neurotoxicity has been modeled in vitro using synthetic peptides derived from the PrPC sequence. The major region of neurotoxicity has been localized to the hydrophobic domain located in the middle of the PrP protein. Neurotoxicity assays are typically performed on cultured mouse cerebellar neurons derived from neonatal pups, and cell viability can be monitored by assays including MTT or MTS, cell death by LDH release, or apoptosis by caspase cleavage assays. These neurotoxicity studies have been useful in identifying cofactors, such as PrPC and metals, as modulators of PrP peptide-mediated neurotoxicity. Given the biosafety issues associated with handling and purifying infectious prions, the use of synthetic peptides, which display a dependence upon PrPC expression for toxicity, as per the PrPSc agent for infectivity, supports the relevance of using these synthetic peptides for understanding PrP-mediated neurotoxicity.
Keywords: Cell viability; Cultured cerebellar neurons; Lipid peroxidation; Neurotoxicity; PrP106–126; Prion protein (PrP); immunofluorescence.