Growth Behavior of Pristine and Potassium Doped Coronene Thin Films on Substrates with Tuned Coupling Strength

J Phys Chem B. 2018 Jan 18;122(2):601-611. doi: 10.1021/acs.jpcb.7b05140. Epub 2017 Sep 19.

Abstract

The growth of polycyclic aromatic hydrocarbon (PAH) molecular coronene film on various substrates and the subsequent doping of potassium under ultrahigh vacuum (UHV) conditions have been systematically investigated by low-temperature scanning tunneling microscopy and spectroscopy (STM/STS). The crystalline structures and molecular orientations of coronene thin films are both thickness-dependent and substrate-sensitive due to the competition between molecule-substrate interaction and intermolecular interaction. In mono- or bilayer films, coronene molecules are flat-lying on the surface with hexagonal lattice, whereas in multilayer films, the topmost molecules are in a standing-up but tilted configuration with rectangular lattice. In particular, a 2 × 1 superstructure with respect to that of bulk coronene is formed on thick KCl film. Furthermore, we have studied the potassium doped coronene monolayer and multilayer on Ag(100) and KCl/Ag(100) surface. For K-doped coronene monolayer, at certain doping ratio x = 3, the lowest unoccupied molecular orbital (LUMO) of coronene film moves to the Fermi level, and a splitting of the LUMO state is observed. Increased potassium doping would result in a filled LUMO state below the Fermi level. By contrast, no well-ordered structures are obtained in the K-doped coronene multilayers which are vulnerable to rather moderate annealing processes owing to their relatively weak bonding with the supporting substrates, implying a big challenge of growth of PAH thick films in vacuum. The differences in the crystal structures of coronene thin films compared with that in bulk crystals might shed insight on the controversies in the experimental results on the electronic properties of alkali-metal-doped PAHs.

Publication types

  • Research Support, Non-U.S. Gov't