Tritium background levels in various environmental compartments are deeply needed in particular to assess radiological impact, especially in river systems where most of releases from nuclear facilities are performed. The present study aims to identify the main environmental factors that influence tritium background levels in rivers at the regional scale. 41 samples were collected from 2014 to 2016 along 17 small rivers in the south of France. All were located out of the influence of direct releases from nuclear facilities. Tritiated water (HTO) concentrations measured in water samples ranged from 0.12±0.11 to 0.86±0.15BqL-1 and HTO concentrations in rains were modelled between 2015 and 2016 over the study period referring to time series acquired from 1963 to 2014 at Thonon-les-Bains monitoring station. The results of tritium concentrations in rivers studied present a significant variability and are more than twice lower than forecasted values in rain. Multiple linear regressions allowed identifying that HTO concentration in rains, watershed area and altitude were the main tested parameters that are linked to the variability of HTO concentrations in the studied rivers. Finally, HTO fluxes delivered to the Mediterranean Sea by French coastal rivers out of influence of nuclear releases were estimated. The results highlight that those account for around 1% of HTO exported while 99% are transferred by the nuclearized Rhone River.
Keywords: (3)H; HTO; Rainfalls; River; Tritium fluxes.
Copyright © 2017 Elsevier B.V. All rights reserved.