Repetitive transcranial magnetic stimulation for treatment of lactacystin-induced Parkinsonian rat model

Oncotarget. 2017 Apr 20;8(31):50921-50929. doi: 10.18632/oncotarget.17285. eCollection 2017 Aug 1.

Abstract

The dysfunction of ubiquitin-proteasome system is an important pathogenesis in the neurodegenerative process of Parkinson's disease. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive and potential method in treating Parkinson's disease. To investigate whether rTMS has neuroprotective effects in parkinsonian rat model induced by ubiquitin-proteasome system impairment, we gave rTMS daily for 4 weeks to proteasome inhibitor, lactacystin-induced parkinsonian rat model. Rotational behavior test demonstrated that rTMS obviously reduced apomorphine-induced turning number in parkinsonian rats. rTMS could significantly alleviate the loss of tyrosine hydroxylase-positive dopaminergic neurons in lactacystin-lesioned substantia nigra and prevent the loss of striatal dopamine levels. Furthermore, rTMS also reduced the levels of apoptotic protein (cleaved caspase-3) and inflammatory factors (cyclooxygenase-2 and tumor necrosis factor alpha) in lesioned substantia nigra. These results suggest that rTMS can protect nigral dopaminergic neurons against the ubiquitin-proteasome system impairment-induced degeneration by anti-apoptotic and anti-inflammatory molecular mechanism.

Keywords: Parkinson's disease; apoptosis; dopamine; rTMS; ubiquitin-proteasome system.