This study aims to investigate the effects of Cyclin D1 silencing on cell cycle, cell proliferation, and apoptosis of hepatocellular carcinoma cells (HCC). Cells were divided into the blank group, negative control group (HCC cells transfected with control shRNA), Cyclin D1 shRNA group (HCC cells transfected with Cyclin D1 shRNA), and the normal group (human normal liver L-02 cells). Expressions of Cyclin D1, Caspase-3, Bcl-2, and C-myc were detected by RT-qPCR and Western blotting. Cell proliferation was detected by Cell Counting Kit-8. Cell cycle and apoptosis were detected by flow cytometry. Tumor xenograft in nude mice was performed to detect in vivo tumorigenesis. HCC tissues and HCC cells exhibited elevated expression levels of Cyclin D1. Cyclin D1 expression levels was found to be correlated with tumor size and tumor staging. Compared with the normal group, the blank group showed enhanced cell proliferation, a reduction in the amount of cells in G0/G1 phase, increased number cells in S and G2/M phase, reduced apoptosis, elevated expressions of Cyclin D1, Bcl-2, and C-myc, decreased Caspase-3 activity and significant tumorigenicity. In comparison with the blank group, the Cyclin D1 shRNA group revealed weakened cell proliferation, reduced cells in S and G2/M phase, increased cells in G0/G1 phase, increased Annexin V positive cell ratio, decreased expression of Cyclin D1, Bcl-2, and C-myc, elevated Caspase-3 activity and inhibited tumorigenicity. In conclusion, Cyclin D1 gene silencing suppresses cell proliferation and inhibits cell apoptosis, which may be a new target approach in the treatment and management for HCC.
Keywords: cell apoptosis; cell cycle; cell proliferation; gene silencing; hepatocellular carcinoma.
© 2017 Wiley Periodicals, Inc.