Humoral immunity serve dual functions of direct pathogen neutralization and enhancement of leukocyte function. Antibody classes are determined by antigen triggers, and the resulting antibodies can contribute to disease pathogenesis and host defense. Although asthma and influenza are immunologically distinct diseases, since we have found that allergic asthma exacerbation promotes antiviral host responses to influenza A virus, we hypothesized that humoral immunity may contribute to allergic host protection during influenza. C57BL/6J mice sensitized and challenged with Aspergillus fumigatus (or not) were infected with pandemic influenza A/CA/04/2009 virus. Negative control groups included naïve mice, and mice with only 'asthma' or influenza. Concentrations of antibodies were quantified by ELISA, and in situ localization of IgA- and IgE-positive cells in the lungs was determined by immunohistochemistry. The number and phenotype of B cells in spleens and mediastinal lymph nodes were determined by flow cytometry at predetermined timepoints after virus infection until viral clearance. Mucosal and systemic antibodies remained elevated in mice with asthma and influenza with prominent production of IgE and IgA compared to influenza-only controls. B cell expansion was prominent in the mediastinal lymph nodes of allergic mice during influenza where most cells produced IgG1 and IgA. Although allergy-skewed B cell responses dominated in mice with allergic airways inflammation during influenza virus infection, virus-specific antibodies were also induced. Future studies are required to identify the mechanisms involved with B cell activation and function in allergic hosts facing respiratory viral infections.
Keywords: Antibody; Fungal allergy; Host-pathogen interactions; Lung; Pandemic influenza.
Copyright © 2017 Elsevier GmbH. All rights reserved.