MoS2-Based Mixed-Dimensional van der Waals Heterostructures: A New Platform for Excellent and Controllable Microwave-Absorption Performance

ACS Appl Mater Interfaces. 2017 Oct 4;9(39):34243-34255. doi: 10.1021/acsami.7b10114. Epub 2017 Sep 20.

Abstract

It is widely recognized that constructing multiple interface structures for enhanced interface polarization is beneficial to microwave absorption. Here, we report our work of achieving excellent microwave-absorption performance and controlling better-defined interfaces in vertically stacked two-dimensional (2D) MoS2 with other dimensional building blocks. The optimal reflection loss and effective absorbing bandwidth (reflection loss <-10 dB) of several mixed-dimensional van der Waals heterostructures are as follows: (i) for 2-0 type (2D MoS2/zero-dimensional Ni nanoparticles), -19.7 dB and 2.92 GHz; (ii) for 2-1 type (2D MoS2/one-dimensional carbon nanotubes), -47.9 dB and 5.60 GHz; and (iii) for 2-3 type (2D MoS2/three-dimensional carbon layers), -69.2 dB and 4.88 GHz. As a result, by selected synthesis of different types of microstructures, we can regulate and control microwave-absorption properties in MoS2 mixed-dimensional van der Waals heterostructures. In addition, attributing to the better-defined interfaces generated in mixed-dimensional van der Waals heterostructures, we found an alternative strategy to improve microwave attenuation properties of 2-0, 2-1, and 2-3 samples by controlling interfacial contacts. The results indicate that mixed-dimensional van der Waals heterostructures provide a new stage for the next generation of microwave-absorbing materials.

Keywords: MoS2; electromagnetic property; interface polarization; microwave absorption; mixed-dimensional van der Waals heterostructures; two-dimensional materials.