In-Situ and Real-time Monitoring of Mechanochemical Preparation of Li2 Mg(NH2 BH3 )4 and Na2 Mg(NH2 BH3 )4 and Their Thermal Dehydrogenation

Chemistry. 2017 Nov 16;23(64):16274-16282. doi: 10.1002/chem.201702665. Epub 2017 Oct 23.

Abstract

For the first time, in situ monitoring of uninterrupted mechanochemical synthesis of two bimetallic amidoboranes, M2 Mg(NH2 BH3 )4 (M=Li, Na), by means of Raman spectroscopy, has been applied. This approach allowed real-time observation of key intermediate phases, and a straightforward follow-up of the reaction course. Detailed analysis of time-dependent spectra revealed a two-step mechanism through MNH2 BH3 ⋅NH3 BH3 adducts as key intermediate phases which further reacted with MgH2 , giving M2 Mg(NH2 BH3 )4 as final products. The intermediates partially take a competitive pathway toward the oligomeric M(BH3 NH2 BH2 NH2 BH3 ) phases. The crystal structure of the novel bimetallic amidoborane Li2 Mg(NH2 BH3 )4 was solved from high-resolution powder diffraction data and showed an analogous metal coordination to Na2 Mg(NH2 BH3 )4 , but a significantly different crystal packing. Li2 Mg(NH2 BH3 )4 thermally dehydrogenates releasing highly pure H2 in the amount of 7 wt.%, and at a lower temperature then its sodium analogue, making it significantly more viable for practical applications.

Keywords: Raman spectroscopy; amidoboranes; hydrogen storage; mechanochemistry; thermal dehydrogenation.