Local field potential (LFP) recordings were performed from the visual cortex (V1) of a focal epilepsy mouse model. Epilepsy was induced by a unilateral injection of the synaptic blocker tetanus neurotoxin (TeNT). LFP signals were simultaneously recorded from V1 of both hemispheres of each animal under acute and chronic conditions (i.e. during and after the period of TeNT action). All data were analysed by using nonlinear time series methods. Suitable values of the lag time and embedding dimension for phase space reconstruction were estimated by employing well-known methods. The results showed that lag times are sensitive to the presence of TeNT. Interestingly, TeNT promoted an increase in the level of linear and nonlinear correlation of LFP signals. The values of the embedding dimension failed to show any dependence on the presence of the neurotoxin. However, a local nonlinear prediction method showed that the presence of TeNT increases the predictability, quantified by the normalized prediction error, of the neural recordings. From a neurophysiological point of view, the above results suggest that TeNT injected in one hemisphere strongly impacts the local electrical activity of the neural populations in the opposite hemisphere. We hypothesize that this could arise from a qualitative and quantitative alteration of the transmission properties of the callosal fibers.
Keywords: Epilepsy; LFP recording; Nonlinear prediction; Phase space reconstruction.
Copyright © 2017 Elsevier B.V. All rights reserved.