Structural controllability is the generalization of traditional controllability for dynamical systems. During the last decade, interesting biological discoveries have been inferred by applied structural controllability analysis to biological networks. However, false positive/negative information (i.e. nodes and edges) widely exists in biological networks that documented in public data sources, which can hinder accurate analysis of structural controllability. In this study, we propose WDNfinder, a comprehensive analysis package that provides structural controllability with consideration of node connection strength in biological networks. When applied to the human cancer signaling network and p53-mediate DNA damage response network, WDNfinder shows high accuracy on essential nodes prediction in these networks. Compared to existing methods, WDNfinder can significantly narrow down the set of minimum driver node set (MDS) under the restriction of domain knowledge. When using p53-mediate DNA damage response network as illustration, we find more meaningful MDSs by WDNfinder. The source code is implemented in python and publicly available together with relevant data on GitHub: https://github.com/dustincys/WDNfinder .
Keywords: Structural control; human cancer signaling network; p53-mediate DNA damage response network; weighted minimum driver node set.