Unilateral intrastriatal BoNT-A injection abolished apomorphine-induced rotational behavior in a rat model of hemiparkinsonism (hemi-PD) up to 6months. It was hypothesized that the beneficial effect of botulinum neurotoxin-A (BoNT-A) grounded on the reduction of the Parkinson's diseases (PD) associated striatal hypercholinism. Intrastriatal injection of BoNT-A was not cytotoxic in rat brain, but neuronal fiber swellings in the BoNT-A infiltrated striata appeared and named BoNT-A-induced varicosities (BiVs). In the rat BiVs were immunoreactive (ir) either for choline acetyltransferase (ChAT) or tyrosine hydroxylase (TH). In the present study the structural effect of unilateral intrastriatal BoNT-A injection in the naïve mouse brain was analyzed to extend possible therapeutic BoNT-A applications to genetical Parkinsonian strains. We investigated the effect of a single dose of 25pg BoNT-A injected into the right caudate-putamen (CPu) for up to 9months, and of increasing doses up to 200pg on striatal volume, number of ChAT-ir interneurons, and numeric density and volume of the ChAT-ir BiVs in comparison to the uninjected hemisphere. Intrastriatal BoNT-A injection did not alter the number of ChAT-ir interneurons irrespective of survival time and dosage tested. However, the numeric density of the ChAT-ir BiVs at a dose of 25pg increased from 1 to 3months after BoNT-A, followed by a time dependent decrease. In parallel, with increasing BoNT-A survival time, the mean BiV volume increased as the number of small BiVs decreased. Interestingly, in contrast to rats we did not find TH-ir BiVs in BoNT-A injected mouse striatum.
Keywords: Basal ganglia; Botulinum neurotoxin-A; Interneuron; Mouse brain; Striatum; Unbiased stereology.
Copyright © 2017 Elsevier B.V. All rights reserved.