Nucleophosmin (NPM1) is a multifunctional nucleolar protein implicated in ribogenesis, centrosome duplication, cell cycle control, regulation of DNA repair and apoptotic response to stress stimuli. The majority of these functions are played through the interactions with a variety of protein partners. NPM1 is frequently overexpressed in solid tumors of different histological origin. Furthermore NPM1 is the most frequently mutated protein in acute myeloid leukemia (AML) patients. Mutations map to the C-terminal domain and lead to the aberrant and stable localization of the protein in the cytoplasm of leukemic blasts. Among NPM1 protein partners, a pivotal role is played by the tumor suppressor Fbw7γ, an E3-ubiquitin ligase that degrades oncoproteins like c-MYC, cyclin E, Notch and c-jun. In AML with NPM1 mutations, Fbw7γ is degraded following its abnormal cytosolic delocalization by mutated NPM1. This mechanism also applies to other tumor suppressors and it has been suggested that it may play a key role in leukemogenesis. Here we analyse the interaction between NPM1 and Fbw7γ, by identifying the protein surfaces implicated in recognition and key aminoacids involved. Based on the results of computational methods, we propose a structural model for the interaction, which is substantiated by experimental findings on several site-directed mutants. We also extend the analysis to two other NPM1 partners (HIV Tat and CENP-W) and conclude that NPM1 uses the same molecular surface as a platform for recognizing different protein partners. We suggest that this region of NPM1 may be targeted for cancer treatment.