Brain shift during tumor resection compromises the spatial validity of registered preoperative imaging data that is critical to image-guided procedures. One current clinical solution to mitigate the effects is to reimage using intraoperative magnetic resonance (iMR) imaging. Although iMR has demonstrated benefits in accounting for preoperative-to-intraoperative tissue changes, its cost and encumbrance have limited its widespread adoption. While iMR will likely continue to be employed for challenging cases, a cost-effective model-based brain shift compensation strategy is desirable as a complementary technology for standard resections. We performed a retrospective study of [Formula: see text] tumor resection cases, comparing iMR measurements with intraoperative brain shift compensation predicted by our model-based strategy, driven by sparse intraoperative cortical surface data. For quantitative assessment, homologous subsurface targets near the tumors were selected on preoperative MR and iMR images. Once rigidly registered, intraoperative shift measurements were determined and subsequently compared to model-predicted counterparts as estimated by the brain shift correction framework. When considering moderate and high shift ([Formula: see text], [Formula: see text] measurements per case), the alignment error due to brain shift reduced from [Formula: see text] to [Formula: see text], representing [Formula: see text] correction. These first steps toward validation are promising for model-based strategies.
Keywords: brain shift; computational modeling; deformation; finite element; image-guided neurosurgery; registration.