Stimuli that capture the central tendency of presented exemplars are often preferred-a phenomenon also known as the classic beauty-in-averageness effect. However, recent studies have shown that this effect can reverse under certain conditions. We propose that a key variable for such ugliness-in-averageness effects is the category structure of the presented exemplars. When exemplars cluster into multiple subcategories, the global average should no longer reflect the underlying stimulus distributions, and will thereby become unattractive. In contrast, the subcategory averages (i.e., local averages) should better reflect the stimulus distributions, and become more attractive. In 3 studies, we presented participants with dot patterns belonging to 2 different subcategories. Importantly, across studies, we also manipulated the distinctiveness of the subcategories. We found that participants preferred the local averages over the global average when they first learned to classify the patterns into 2 different subcategories in a contrastive categorization paradigm (Experiment 1). Moreover, participants still preferred local averages when first classifying patterns into a single category (Experiment 2) or when not classifying patterns at all during incidental learning (Experiment 3), as long as the subcategories were sufficiently distinct. Finally, as a proof-of-concept, we mapped our empirical results onto predictions generated by a well-known computational model of category learning (the Generalized Context Model [GCM]). Overall, our findings emphasize the key role of categorization for understanding the nature of preferences, including any effects that emerge from stimulus averaging. (PsycINFO Database Record
(c) 2018 APA, all rights reserved).