CNTN-1 Enhances Chemoresistance in Human Lung Adenocarcinoma Through Induction of Epithelial-Mesenchymal Transition by Targeting the PI3K/Akt Pathway

Cell Physiol Biochem. 2017;43(2):465-480. doi: 10.1159/000480473. Epub 2017 Sep 1.

Abstract

Background/aims: Chemoresistance has been a major obstacle to the effective treatment of lung cancer. Previously, we found that contactin-1 (CNTN-1) is related to cisplatin resistance in lung adenocarcinoma. Here, we aimed to investigate the underlying mechanism behind the role of CNTN-1 in cisplatin resistance in lung adenocarcinoma.

Methods: EMT-associated phenotypes, including alterations in cellular morphology and marker (E-cadherin, N-cadherin and Vimentin) expression, were compared between A549 cells and A549/DDP cells (a cisplatin-resistant cell line of lung adenocarcinoma with abnormal CNTN-1 expression) by using real-time time PCR and Western blotting. Other methods, including CNTN-1 overexpression in A549 cells and CNTN-1 knockdown in A549/DDP cells, were also used to investigate the role of CNTN-1 in mediating the EMT phenotype and thr resulting cisplatin resistance and malignant progression of cancer cells in vitro and in vivo.

Results: A549/DDP cells exhibited an EMT phenotype and aggravated malignant behaviors. CNTN-1 knockdown in A549/DDP cells partly reversed the EMT phenotype, increased drug sensitivity, and attenuated the malignant progression whereas CNTN-1 overexpression in A549 cells resulted in the opposite trend. Furthermore, the PI3K/Akt pathway was involved in the effects of CNTN-1 on EMT progression in A549/DDP cells, verified by the xenograft mouse model.

Conclusion: CNTN-1 promotes cisplatin resistance in human cisplatin-resistant lung adenocarcinoma through inducing the EMT process by activating the PI3K/Akt signaling pathway. CNTN-1 may be a potential therapeutic target to reverse chemoresistance in cisplatin-resistant lung adenocarcinoma.

Keywords: CNTN-1; Chemoresistance; EMT; NSCLC; PI3K/Akt.

MeSH terms

  • Adenocarcinoma / drug therapy*
  • Adenocarcinoma / genetics
  • Adenocarcinoma / metabolism
  • Adenocarcinoma / pathology
  • Adenocarcinoma of Lung
  • Animals
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cisplatin / pharmacology*
  • Contactin 1 / genetics
  • Contactin 1 / metabolism*
  • Drug Resistance, Neoplasm
  • Epithelial-Mesenchymal Transition / drug effects
  • Female
  • Gene Knockdown Techniques
  • Humans
  • Lung / drug effects*
  • Lung / metabolism
  • Lung / pathology
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology
  • Mice
  • Mice, SCID
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Signal Transduction / drug effects
  • Up-Regulation

Substances

  • Antineoplastic Agents
  • Contactin 1
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • Cisplatin