Pseudomonas aeruginosa is an opportunistic pathogen that causes significant morbidity and mortality in immunocompromised patients, particular cystic fibrosis sufferers, burns victims, diabetics and neonates. It thrives in moist places where it forms biofilms that are exceedingly difficult to eradicate on hospital surfaces, in water supplies and implanted biomaterials. Using a live cell SELEX approach we selected DNA aptamers to P. aeruginosa grown as biofilms in microfluidic cells. From a pool of aptamer candidates showing tight binding a stem-loop structure was identified as being important for binding. Enhanced binding and increased specificity was achieved by truncating structures and generating chimeric aptamers from the pool of top candidates. The top candidates have low nanomolar binding constants and high discrimination for P. aeruginosa over other Gram-negative bacteria. The aptamers bind both planktonic grown and biofilm grown cells. They do not have intrinsic bacteriostatic or bactericidal activity, but are ideal candidates for modification for use as aptamer-drug conjugates and in biosensors.