Accurate staging and outcome prediction is a major problem in clinical management of oral cancer patients, hampering high precision treatment and adjuvant therapy planning. Here, we have built and validated multivariable models that integrate gene signatures with clinical and pathological variables to improve staging and survival prediction of patients with oral squamous cell carcinoma (OSCC). Gene expression profiles from 249 human papillomavirus (HPV)-negative OSCCs were explored to identify a 22-gene lymph node metastasis signature (LNMsig) and a 40-gene overall survival signature (OSsig). To facilitate future clinical implementation and increase performance, these signatures were transferred to quantitative polymerase chain reaction (qPCR) assays and validated in an independent cohort of 125 HPV-negative tumors. When applied in the clinically relevant subgroup of early-stage (cT1-2N0) OSCC, the LNMsig could prevent overtreatment in two-third of the patients. Additionally, the integration of RT-qPCR gene signatures with clinical and pathological variables provided accurate prognostic models for oral cancer, strongly outperforming TNM. Finally, the OSsig gene signature identified a subpopulation of patients, currently considered at low-risk for disease-related survival, who showed an unexpected poor prognosis. These well-validated models will assist in personalizing primary treatment with respect to neck dissection and adjuvant therapies.
Keywords: expression profiling; head and neck cancer; lymph node metastasis; oral cancer; prognostic modeling.