In the context of a health surveillance program for former PCB-exposed workers of a transformer and capacitor recycling company in Germany, their family members, employees of surrounding companies and area residents a broad range of cognitive functions covering attention, executive processing, reasoning, memory and motor performance was examined. The study aimed at identifying potential adverse effects of PCB load on cognitive functions. Detailed analysis of PCB burden of the participants revealed rather high correlations of lower and higher chlorinated as well as dioxin-like PCBs. Nearly one half of the participants exhibited increased burden in all three PCB classes whereas only 33 out of 237 participants did not show any increased PCB burden. Thus, data analysis followed a two-fold strategy: (1) Based on studies providing data on PCB exposure of the German general population the PCB burden of every participant was classified as normal (percentile rank PR <95) or increased (PR ≥95). Increased burden with respect to lower (LPCBs) and higher chlorinated (HPCBs) as well as dioxin-like (dlPCBs) PCBs was assumed if a participant showed at least one congener surpassing the PR95 criterion for the respective congener class and (2) Overall plasma PCB level per congener class was used as measure of PCB load. In a multivariate approach using structural equation modelling and multiple regression analysis we found a significant impact of PCBs on word fluency and sensorimotor processing irrespective of the measure of PCB burden (PR95 criterion or overall plasma level). However, no effect of PCB burden on memory, attention, and cognitive flexibility could be demonstrated. Particularly, an increase of LPCBs was associated with an overall reduction of verbal fluency of letter and semantic word generation as well as word production based on a single or two alternating criteria. In addition, participants with increased burden of LPCBs exhibited a time-on-task effect in terms of a stronger decline of performance with increasing duration of the verbal fluency task. Moreover, we found adverse effects of HPCBs on Aiming and of dlPCBs on Line Tracking. Results are discussed in terms of (1) a decrease of cerebral dopamine (DA) with non-coplanar PCBs resulting in an impact on fronto-striatal cerebral structures subserving verbal fluency and motor processing, (2) a PCB-induced reduction of norepinephrine leading to the time-on-task effect with verbal fluency, and (3) adverse effects of PCBs on dopaminergic receptors in the cerebellum resulting in impaired fine motor function.
Keywords: Dopamine; HELPcB,; Motor function; Neuropsychology; Polychlorinated biphenyls; Verbal fluency.
Copyright © 2017 Elsevier B.V. All rights reserved.