Emulsified lipid digestion was tailored by manipulating the physical state of dispersed oil droplets in whey protein stabilized oil-in-water (O/W) emulsions, where the oil phase consisted of one of five ratios of soybean oil (SO) and fully hydrogenated soybean oil (FHSO). The evolution in particle size distribution, structural changes during oral, gastric, and intestinal digestion, and free fatty acid release during intestinal digestion were all investigated. Irrespective of the physical state and structure of the dispersed oil/fat, all emulsions were stable against droplet size increases during oral digestion. During gastric digestion, the 50:50 SO:FHSO emulsion was more stable against physical breakdown than any other emulsion. All emulsions underwent flocculation and coalescence or partial coalescence upon intestinal digestion, with the SO emulsion being hydrolyzed the most rapidly. The melting point of all emulsions containing FHSO was above 37 °C, with the presence of solid fat within the dispersed oil droplets greatly limiting lipolysis. Fat crystal polymorph and nanoplatelet size did not play an important role in the rate and extent of lipid digestion. Free fatty acid release modeled by the Weibull distribution function showed that the rate of lipid digestion (κ) decreased with increasing solid fat content, and followed an exponential relationship (R2 = 0.95). Overall, lipid digestion was heavily altered by the physical state of the dispersed oil phase within O/W emulsions.
Keywords: emulsion; in vitro digestion; physical state; polymorphism; solid fat.