Monocyte chemotactic protein 1 (CCL2/MCP-1) is a small chemokine involved in the recruitment and trafficking of mononuclear immune cells to inflammation sites. Our studies demonstrate that the metalloendopeptidases meprin A (purified from kidney cortex), recombinant meprin α, and recombinant meprin β can all process CCL2/MCP-1. The cleavage sites were determined by amino acid sequencing and mass spectrometry analysis of the generated products, and the biological activity of the products was evaluated by chemotactic migration assay using THP-1 cells. The cleavage sites generated by the meprin isoforms revealed that meprin A and meprin α cleaved the N-terminal domain of mouse CCL2/MCP-1 at the Asn6 and Ala7 bond, resulting in significant reduction in the chemotactic activity of the cleaved CCL2/MCP-1. Meprin β was unable to cleave the N-terminus of mouse CCL2/MCP-1 but cleaved the C-terminal region between Ser74 and Glu75. Human CCL2/MCP-1 that lacks the murine C-terminal region was also cleaved by meprin α at the N-terminus resulting in significant loss of CCL2/MCP-1 biological activity, whereas meprin β did not affect the biological activity. These studies suggest that meprin α and meprin β may play important roles in regulating the CCL2/MCP-1 chemokine activity during inflammation.
Keywords: Chemokine; Inflammation; Meprin A; Meprin α; Meprin β; Metalloproteinase; Monocyte chemotactic protein 1.