Phloridzin is a natural phloretin glucoside found in several parts of apple trees and is an attractive target for structural modification as novel pharmaceutical agent. Nonthermal dielectric barrier discharge (DBD) plasma-induced structural changes in dihydrochalcone phloridzin (1) resulted in the isolation of three new methylene-bridged dihydrochalcone dimers, methylenebisphloridzin (2), deglucosylmethylenebisphloridzin (3), and methylenebisphloretin (4), along with phloretin (5). The chemical structures of these newly generated compounds were elucidated by interpretation of their spectroscopic data. The new phloretin dimer 4 connected by a methylene linkage exhibited significantly improved anti-adipogenic properties against pancreatic lipase as well as differentiation of 3T3-L1 preadipocytes compared to the parent compound phloridzin.
Keywords: Adipocyte differentiation; Dielectric barrier discharge plasma; Dimerization; Pancreatic lipase; Phlorodzin.
Copyright © 2017 Elsevier Ltd. All rights reserved.