Efficacy of a Fatty Acids Dietary Supplement in a Polyethylene Glycol-Induced Mouse Model of Retinal Degeneration

Nutrients. 2017 Sep 29;9(10):1079. doi: 10.3390/nu9101079.

Abstract

Current knowledge of the benefits of nutrition supplements for eye pathologies is based largely on the use of appropriate animal models, together with defined dietary supplementation. Here, C57BL6 mice were subretinally injected with polyethylene glycol (PEG)-400, an established model of retinal degeneration with a dry age-related macular degeneration (AMD)-like phenotype, an eye pathology that lacks treatment. In response to PEG-400, markers of the complement system, angiogenesis, inflammation, gliosis, and macrophage infiltration were upregulated in both retinas and retinal pigment epithelium (RPE)/choroids, whereas dietary supplementation with a mixture based on fatty acids counteracted their upregulation. Major effects include a reduction of inflammation, in both retinas and RPE/choroids, and an inhibition of macrophage infiltration in the choroid, yet not in the retina, suggesting a targeted action through the choroidal vasculature. Histological analysis revealed a thinning of the outer nuclear layer (ONL), together with dysregulation of the epithelium layer in response to PEG-400. In addition, immunohistofluorescence demonstrated Müller cell gliosis and macrophage infiltration into subretinal tissues supporting the molecular findings. Reduced ONL thickness, gliosis, and macrophage infiltration were counteracted by the diet supplement. The present data suggest that fatty acids may represent a useful form of diet supplementation to prevent or limit the progression of dry AMD.

Keywords: complement system; dietary supplementation; dry age-related macular degeneration; inflammation; macrophage infiltration.

MeSH terms

  • Animals
  • Anti-Inflammatory Agents, Non-Steroidal / therapeutic use
  • Biomarkers / metabolism
  • Choroid / drug effects
  • Choroid / immunology
  • Choroid / metabolism*
  • Choroid / pathology
  • Dietary Supplements*
  • Disease Models, Animal*
  • Eye Proteins / genetics
  • Eye Proteins / metabolism
  • Fatty Acids / therapeutic use*
  • Gene Expression Regulation / drug effects
  • Immunohistochemistry
  • Injections, Intraocular
  • Macrophage Activation
  • Male
  • Mice, Inbred C57BL
  • Polyethylene Glycols / administration & dosage
  • Polyethylene Glycols / toxicity
  • Protective Agents / therapeutic use
  • Retina / drug effects
  • Retina / immunology
  • Retina / metabolism*
  • Retina / pathology
  • Retinal Degeneration / chemically induced
  • Retinal Degeneration / metabolism
  • Retinal Degeneration / pathology
  • Retinal Degeneration / prevention & control*
  • Retinal Pigment Epithelium / drug effects
  • Retinal Pigment Epithelium / immunology
  • Retinal Pigment Epithelium / metabolism
  • Retinal Pigment Epithelium / pathology
  • Solvents / administration & dosage
  • Solvents / toxicity

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • Biomarkers
  • Eye Proteins
  • Fatty Acids
  • Protective Agents
  • Solvents
  • Polyethylene Glycols
  • polyethylene glycol 400