Differential Epitope Mapping by STD NMR Spectroscopy To Reveal the Nature of Protein-Ligand Contacts

Angew Chem Int Ed Engl. 2017 Nov 27;56(48):15289-15293. doi: 10.1002/anie.201707682. Epub 2017 Oct 23.

Abstract

Saturation transfer difference (STD) NMR spectroscopy is extensively used to obtain epitope maps of ligands binding to protein receptors, thereby revealing structural details of the interaction, which is key to direct lead optimization efforts in drug discovery. However, it does not give information about the nature of the amino acids surrounding the ligand in the binding pocket. Herein, we report the development of the novel method differential epitope mapping by STD NMR (DEEP-STD NMR) for identifying the type of protein residues contacting the ligand. The method produces differential epitope maps through 1) differential frequency STD NMR and/or 2) differential solvent (D2 O/H2 O) STD NMR experiments. The two approaches provide different complementary information on the binding pocket. We demonstrate that DEEP-STD NMR can be used to readily obtain pharmacophore information on the protein. Furthermore, if the 3D structure of the protein is known, this information also helps in orienting the ligand in the binding pocket.

Keywords: NMR spectroscopy; epitope mapping; fragment-based drug design; pharmacophores; protein-ligand binding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Epitope Mapping*
  • Ligands
  • Nuclear Magnetic Resonance, Biomolecular*
  • Proteins / chemistry*

Substances

  • Ligands
  • Proteins