Photocatalytic Activities Enhanced by Au-Plasmonic Nanoparticles on TiO2 Nanotube Photoelectrode Coated with MoO3

Nanoscale Res Lett. 2017 Oct 6;12(1):560. doi: 10.1186/s11671-017-2327-y.

Abstract

Although TiO2 was formerly a common material for photocatalysis reactions, its wide band gap (3.2 eV) results in absorbing only ultraviolet light, which accounts for merely 4% of total sunlight. Modifying TiO2 has become a focus of photocatalysis reaction research, and combining two metal oxide semiconductors is the most common method in the photocatalytic enhancement process. When MoO3 and TiO2 come into contact to form a heterogeneous interface, the photogenerated holes excited from the valence band of MoO3 should be transferred to the valence band of TiO2 to effectively reduce the charge recombination of photogenerated electron-hole pairs. This can efficiently separate the pairs and promote photocatalysis efficiency. In addition, photocurrent enhancement is attributed to the strong near-field and light-scattering effects from plasmonic Ag nanoparticles. In this work, we fabricated MoO3-coated TiO2 nanotube heterostructures with a 3D hierarchical configuration through two-step anodic oxidation and a facile hydrothermal method. This 3D hierarchical structure consists of a TiO2 nanotube core and a MoO3 shell (referred to as TNTs@MoO3), as characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy.

Keywords: Core–shell structure; Metal oxide; Photocatalysis reaction; Plasmonic nanoparticles.