Proteomics is becoming the de facto gold standard for identifying amyloid proteins and is now used routinely in a number of centres. The technique is compound class independent and offers the added ability to identify variant and modified proteins. We re-examined proteomics results from a number of formalin-fixed paraffin-embedded amyloid samples, which were positive for transthyretin (TTR) by immunohistochemistry and proteomics, using the UniProt human protein database modified to include TTR variants. The amyloidogenic variant, V122I TTR, was incorrectly identified in 26/27 wild-type and non-V122I variant samples due to its close mass spectral similarity with the methyl lysine-modified WT peptide [126KMe]105-127 (p.[146 KMe]125-147) generated during formalin fixation. Similarly, the methyl lysine peptide, [50KMe]43-59, from immunoglobulin lambda light chain constant region was also misidentified as arising from a rare myeloma-derived lambda variant V49I. These processing-derived modifications are not present in fresh cardiac tissue, non-fixed fat nor serum and do not materially affect the identification of amyloid proteins. They could result in the incorrect assignment of a variant, and this may have consequences for the immediate family who will require genetic counselling and potentially early clinical intervention. As proteomics becomes a routine clinical test for amyloidosis, it becomes important to be aware of potentially confounding issues such as formalin-mediated lysine methylation, and how these may influence diagnosis and possibly treatment.
Keywords: Amyloidosis; formalin; immunoglobulin; proteomics; transthyretin; variant.