Trivalent Lewis Acidic Cations Govern the Electronic Properties and Stability of Heterobimetallic Complexes of Nickel

Chemistry. 2018 Jan 2;24(1):141-149. doi: 10.1002/chem.201704006. Epub 2017 Nov 6.

Abstract

Assembly of heterobimetallic complexes is synthetically challenging due to the propensity of ditopic ligands to bind metals unselectively. Here, we employ a novel divergent approach for selective preparation of a variety of bimetallic complexes within a ditopic macrocyclic ligand platform. In our approach, nickel is readily coordinated to a Schiff base cavity, and then a range of redox-inactive cations (M=Na+ , Ca2+ , Nd3+ , and Y3+ ) are installed in a pendant crown-ether-like site. This modular strategy allows access to complexes with the highly Lewis acidic trivalent cations Nd3+ and Y3+ , a class of compounds that were previously inaccessible. Spectroscopic and electrochemical studies reveal wide variations in properties that are governed most strongly by the trivalent cations. Exposure to dimethylformamide drives loss of Nd3+ and Y3+ from the pendant crown-ether site, suggesting solvent effects must be carefully considered in future applications involving use of highly Lewis acidic metals.

Keywords: Lewis acids; electrochemistry; macrocyclic ligands; nickel; redox chemistry.