Atrial fibrillation (AF) is the most common sustained arrhythmia associated with several cardiac risk factors, but increasing evidences indicated a genetic component. Indeed, genetic variations of the specific PITX2 gene have been identified in patients with early-onset AF. To investigate the molecular mechanisms underlying AF, we reprogrammed to pluripotency polymorphonucleated leukocytes isolated from the blood of a patient carrying a PITX2 p.M200V mutation, using a commercially available non-integrating expression system. The generated iPSCs expressed pluripotency markers and differentiated toward cells belonging to the three embryonic germ layers. Moreover, the cells showed a normal karyotype and retained the PITX2 p.M200V mutation.
Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.