Loss of Protein Kinase Novel 1 (PKN1) is associated with mild systolic and diastolic contractile dysfunction, increased phospholamban Thr17 phosphorylation, and exacerbated ischaemia-reperfusion injury

Cardiovasc Res. 2018 Jan 1;114(1):138-157. doi: 10.1093/cvr/cvx206.

Abstract

Aims: PKN1 is a stress-responsive protein kinase acting downstream of small GTP-binding proteins of the Rho/Rac family. The aim was to determine its role in endogenous cardioprotection.

Methods and results: Hearts from PKN1 knockout (KO) or wild type (WT) littermate control mice were perfused in Langendorff mode and subjected to global ischaemia and reperfusion (I/R). Myocardial infarct size was doubled in PKN1 KO hearts compared to WT hearts. PKN1 was basally phosphorylated on the activation loop Thr778 PDK1 target site which was unchanged during I/R. However, phosphorylation of p42/p44-MAPK was decreased in KO hearts at baseline and during I/R. In cultured neonatal rat ventricular cardiomyocytes (NRVM) and NRVM transduced with kinase dead (KD) PKN1 K644R mutant subjected to simulated ischaemia/reperfusion (sI/R), PhosTag® gel analysis showed net dephosphorylation of PKN1 during sI and early R despite Thr778 phosphorylation. siRNA knockdown of PKN1 in NRVM significantly decreased cell survival and increased cell injury by sI/R which was reversed by WT- or KD-PKN1 expression. Confocal immunofluorescence analysis of PKN1 in NRVM showed increased localization to the sarcoplasmic reticulum (SR) during sI. GC-MS/MS and immunoblot analysis of PKN1 immunoprecipitates following sI/R confirmed interaction with CamKIIδ. Co-translocation of PKN1 and CamKIIδ to the SR/membrane fraction during sI correlated with phospholamban (PLB) Thr17 phosphorylation. siRNA knockdown of PKN1 in NRVM resulted in increased basal CamKIIδ activation and increased PLB Thr17 phosphorylation only during sI. In vivo PLB Thr17 phosphorylation, Sarco-Endoplasmic Reticulum Ca2+ ATPase (SERCA2) expression and Junctophilin-2 (Jph2) expression were also basally increased in PKN1 KO hearts. Furthermore, in vivo P-V loop analysis of the beat-to-beat relationship between rate of LV pressure development or relaxation and end diastolic P (EDP) showed mild but significant systolic and diastolic dysfunction with preserved ejection fraction in PKN1 KO hearts.

Conclusion: Loss of PKN1 in vivo significantly reduces endogenous cardioprotection and increases myocardial infarct size following I/R injury. Cardioprotection by PKN1 is associated with reduced CamKIIδ-dependent PLB Thr17 phosphorylation at the SR and therefore may stabilize the coupling of SR Ca2+ handling and contractile function, independent of its kinase activity.

Keywords: Protein kinase Novel 1 (PKN1) • Cardioprotection • Infarction • CamKIIδ • Phospholamban.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium Signaling
  • Calcium-Binding Proteins / metabolism*
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / metabolism
  • Cells, Cultured
  • Diastole
  • Disease Models, Animal
  • Humans
  • Membrane Proteins / metabolism
  • Mice, Knockout
  • Myocardial Contraction*
  • Myocardial Infarction / enzymology*
  • Myocardial Infarction / genetics
  • Myocardial Infarction / pathology
  • Myocardial Infarction / physiopathology
  • Myocardial Reperfusion Injury / enzymology*
  • Myocardial Reperfusion Injury / genetics
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / physiopathology
  • Myocardium / metabolism*
  • Myocardium / pathology
  • Phosphorylation
  • Protein Kinase C / deficiency*
  • Protein Kinase C / genetics
  • Rats, Sprague-Dawley
  • Sarcoplasmic Reticulum / enzymology
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / metabolism
  • Severity of Illness Index
  • Stroke Volume
  • Systole
  • Ventricular Dysfunction, Left / enzymology*
  • Ventricular Dysfunction, Left / genetics
  • Ventricular Dysfunction, Left / physiopathology
  • Ventricular Function, Left*
  • Ventricular Pressure

Substances

  • Atp2a2 protein, rat
  • Calcium-Binding Proteins
  • Membrane Proteins
  • junctophilin
  • phospholamban
  • protein kinase N
  • Protein Kinase C
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Camk2g protein, rat
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases