This paper describes the design, microfabrication, and characterization of a miniature force sensor for providing tactile feedback in robotic surgical systems. We demonstrate for the first time a microfabricated sensor that can provide triaxial sensing (normal, x-shear, y-shear) in a single sensor element that can be integrated with commercial robotic surgical graspers. Features of this capacitive force sensor include differential sensing in the shear directions as well as a design where all electrical connections are on one side, leaving the backside pristine as the sensing face. The sensor readout is performed by a custom-designed printed circuit board with 24-bit resolution. Experimental results of sensor performance show normal force resolution of 0.055 N, x-shear resolution of 0.25 N, and y-shear resolution of 1.45 N, all of which fall in a range of clinically relevant forces.