Purpose: Exosomal miRNAs that play an important role in cell-cell communication have attracted major attention as potential diagnostic and prognostic biomarkers for various cancers. The aim of this study was to determine the diagnostic/prognostic significance of serum exosomal miR-301a in glioma patients.
Methods: Quantitative real-time PCR was used to determine the serum exosomal expression levels of miR-301a. Kaplan-Meier survival analyses, Cox regression analyses and ROC working curve analyses were applied to assess the diagnostic and prognostic values of miR-301a in glioma patients. Also, several in vitro assays were used, including proliferation, invasion and cell signaling assays.
Results: First, we established that serum exosomal miR-301a extracted from grade IV glioblastoma (GBM) patients was biologically active, i.e., promoted the proliferation and invasion of glioma-derived H4 cells. Subsequently, we found that serum exosomal miR-301a levels were significantly up-regulated in glioma patients compared to healthy controls. Additionally, we found that increased serum exosomal miR-301a levels were correlated with ascending pathological grades and lower Karnofsky performance status (KPS) scores. Importantly, we also found that the serum exosomal miR-301a levels were significantly reduced after surgical resection of primary tumors and increased again during GBM recurrence. Kaplan-Meier analysis of patients with an advanced pathological grade (III or IV) and an increased serum exosomal miR-301a level revealed a longer overall survival (OS) compared to those with a lower level (p < 0.01). Both univariate and multivariate Cox regression analyses confirmed that serum exosomal miR-301a levels are independently associated with OS. Finally, we found that miR-301a may activate the AKT and FAK signaling pathways by down regulating PTEN.
Conclusions: Our data indicate that serum exosomal miR-301a levels may reflect the cancer-bearing status and pathological changes in glioma patients. Serum exosomal miR-301a expression may serve as a novel biomarker for glioma diagnosis and as a prognostic factor for advanced grade disease.
Keywords: Biomaker; Exosome; Glioma; Serum; miR-301a.