Purpose of review: Despite better knowledge of its genetic basis, pancreatic cancer is still highly lethal with very few therapeutic options. In this review, we discuss the potential impact of epigenetic therapies, focusing on lysine methylation signaling and its implication in pancreatic cancer.
Recent findings: Protein lysine methylation, a key mechanism of posttranslational modifications of histone proteins, has emerged as a major cell signaling mechanism regulating physiologic and pathologic processes including cancer. This finely tuned and dynamic signaling mechanism is regulated by lysine methyltransferases (KMT), lysine demethylases (KDM) and signal transducers harboring methyl-binding domains. Recent evidence demonstrates that overexpression of cytoplasmic KMT and resulting enhanced lysine methylation is a reversible event that enhances oncogenic signaling through the Ras and Mitogen-Activated Protein Kinases pathway in pancreatic cancer, opening perspectives for new anticancer chemotherapeutics aimed at controlling these activities.
Summary: The development of potent and specific inhibitors of lysine methylation signaling may represent a hitherto largely unexplored avenue for new forms of targeted therapy in cancer, with great potential for yet hard-to-treat cancers such as pancreatic cancer.