Adult T-cell leukemia (ATL) has a poor prognosis as a result of severe immunosuppression and rapid tumor progression with resistance to conventional chemotherapy. Recent integrated-genome analysis has revealed mutations in many genes involved in the T-cell signaling pathway, suggesting that the aberration of this pathway is an important factor in ATL pathogenesis and ATL-cell proliferation. We screened a siRNA library to examine signaling-pathway functionality and found that the PI3K/Akt/mTOR pathway is critical to ATL-cell proliferation. We therefore investigated the effect of mammalian target of rapamycin (mTOR) inhibitors, including the dual inhibitors PP242 and AZD8055 and the mTORC1 inhibitors rapamycin and everolimus, on human T-cell leukemia virus type 1 (HTLV-1)-infected-cell and ATL-cell lines. Both dual inhibitors inhibited the proliferation of all tested cell lines by inducing G1-phase cell-cycle arrest and subsequent cell apoptosis, whereas the effects of the 2 mTORC1 inhibitors were limited, as they did not induce cell apoptosis. In the ATL-cell lines and in the primary ATL samples, both dual inhibitors inhibited phosphorylation of AKT at serine-473, a target of mTORC2, as well as that of S6K, whereas the mTORC1 inhibitors only inhibited mTORC1. Furthermore, AZD8055 more significantly inhibited the in vivo growth of the ATL-cell xenografts than did everolimus. These results indicate that the PI3K/mTOR pathway is critical to ATL-cell proliferation and might thus be a new therapeutic target in ATL.
Keywords: Akt; HTLV-1; adult T-cell leukemia; mTOR; mTORC.
© 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.