The neuroimmune factor IL-6 has been shown to regulate hippocampal long-term potentiation (LTP), an activity-dependent enhancement of synaptic transmission that plays a central role in memory and learning. This IL-6 action was demonstrated with relatively short IL-6 exposure, and may reflect physiological actions of IL-6. IL-6 is also expressed chronically at elevated levels in the central nervous system (CNS) under pathological conditions such as neurological disorders. Little is known about the effects IL-6 on LTP under such conditions, an issue that we are addressing by electrophysiological recordings from CA1 pyramidal neurons of hippocampal slices from transgenic mice that persistently express elevated levels of IL-6 in the CNS (IL-6 tg). The current studies examined the long-lasting phase of LTP (late LTP; L-LTP) and the potential involvement mammalian target of rapamycin (mTOR), a known regulator of L-LTP and a downstream partner of IL-6 signal transduction pathways. Results show that basal synaptic transmission and L-LTP were increased in hippocampal slices from IL-6 tg mice compared to slices from non-transgenic (non-tg) control mice. An inhibitor of mTOR, rapamycin, reduced L-LTP in slices from both genotypes, and eliminated the difference in magnitude of L-LTP between IL-6 and non-tg hippocampus. There were no genotypic effect of rapamycin on basal synaptic transmission, but synaptic responses during the LTP induction protocol were reduced in IL-6 tg slices, an effect that could contribute to the reduction of L-LTP in the IL-6 tg slices. These results indicate that persistently increased levels of IL-6 can lead to alterations in mTOR regulation of L-LTP, possibly affecting learning and memory.
Keywords: astrocyte; cytokine; mTOR; neuroimmune; synaptic function; synaptic plasticity.
Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.