Kinetoplastid-based infections are neglected diseases that represent a significant human health issue. Chemotherapeutic options are limited due to toxicity, parasite susceptibility, and poor patient compliance. In response, we studied a molecular-target-directed approach involving intervention of hexokinase activity-a pivotal enzyme in parasite metabolism. A benzamidobenzoic acid hit with modest biochemical inhibition of Trypanosoma brucei hexokinase 1 (TbHK1, IC50 =9.1 μm), low mammalian cytotoxicity (IMR90 cells, EC50 >25 μm), and no appreciable activity on whole bloodstream-form (BSF) parasites was optimized to afford a probe with improved TbHK1 potency and, significantly, efficacy against whole BSF parasites (TbHK1, IC50 =0.28 μm; BSF, ED50 =1.9 μm). Compounds in this series also inhibited the hexokinase enzyme from Leishmania major (LmHK1), albeit with less potency than toward TbHK1, suggesting that inhibition of the glycolytic pathway may be a promising opportunity to target multiple disease-causing trypanosomatid protozoa.
Keywords: antiparasitic agents; benzamidobenzamidines; leishmania; sleeping sickness; trypanosomes.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.