Purpose: Glucagon-like peptide-1 (GLP-1) analogues reduce ER stress and inflammation in key metabolic organs, including the liver. However, their effects on heat shock response (HSR) and mitogen-activated protein kinases (MAPKs) have not yet been elucidated. In the present study, we investigate whether the GLP-1 analogue, exendin-4, triggers the expression of HSR and increases MAPK activity under metabolic stress.
Experimental design: The effects of exendin-4 in the presence or absence of palmitic acid (PA; 400 μm) or glucose (30 mm) in the HepG2 liver cell line are assessed using Western blots, quantitative real-time PCR, and label-free proteomics.
Results: Heat shock proteins (HSP60, HSP72, HSP90, and GRP78) and other chaperones are not significantly affected by exendin-4 under the conditions tested. In contrast, the presence of exendin-4 alone increases the MAPK phosphorylation levels (JNK, ERK1/2, and p38). For short incubation periods, in the presence of PA or glucose, treatment with exendin-4 exhibits limited effects but significantly attenuates MAPK phosphorylation after a 24-h incubation. Interestingly, canonical signaling pathways, such as EIF2, ILK, PKA, and Rho, are modulated by exendin-4.
Conclusion and clinical relevance: Identifying new pathways modulated by GLP-1 analogues will provide further insights into their benefits beyond their currently recognized roles in glycemic control, such as MAPK activity, energy homeostasis, and body weight decrease.
Keywords: GLP-1; HSP; MAPKs; cellular stress; diabetes.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.