The Starmerella bombicola lactone esterase (SBLE) is a novel enzyme that, in vivo, catalyzes the intramolecular esterification (lactonization) of acidic sophorolipids in an aqueous environment. In fact, this is an unusual reaction given the unfavorable conditions for dehydration. This characteristic strongly contributes to the potential of SBLE to become a 'green' tool in industrial applications. Indeed, lactonization occurs normally in organic solvents, an application for which microbial lipases are increasingly used as biocatalysts. Previously, we described the production of recombinant SBLE (rSBLE) in Pichia pastoris (syn. Komagataella phaffii). However, expression was not optimal to delve deeper into the enzyme's potential for industrial application. In the current study, we explored codon-optimization of the SBLE gene and we optimized the rSBLE expression protocol. Temperature reduction had the biggest impact followed by codon-optimization and co-expression of the HAC1 transcription factor. Combining these approaches, we achieved a 32-fold improvement of the yield during rSBLE production (from 0.75 mg/l to 24 mg/L culture) accompanied with a strong reduction of contaminants after affinity purification.
Keywords: Green chemistry; Lactonase; Lipase; Pichia pastoris; Protein purification; Starmerella bombicola.
Copyright © 2017 Elsevier Inc. All rights reserved.