Background and purpose: Visual rating scales have limited capacities to depict the regional distribution of cerebral white matter hyperintensities (WMH). We present a regional-zonal volumetric analysis alongside a visualization tool to compare and deconstruct visual rating scales.
Materials and methods: 3D T1-weighted, T2-weighted spin-echo and FLAIR images were acquired on a 3T system, from 82 elderly participants in a population-based study. Images were automatically segmented for WMH. Lobar boundaries and distance to ventricular surface were used to define white matter regions. Regional-zonal WMH loads were displayed using bullseye plots. Four raters assessed all images applying three scales. Correlations between visual scales and regional WMH as well as inter and intra-rater variability were assessed. A multinomial ordinal regression model was used to predict scores based on regional volumes and global WMH burdens.
Results: On average, the bullseye plot depicted a right-left symmetry in the distribution and concentration of damage in the periventricular zone, especially in frontal regions. WMH loads correlated well with the average visual rating scores (e.g. Kendall's tau [Volume, Scheltens]=0.59 CI=[0.53 0.62]). Local correlations allowed comparison of loading patterns between scales and between raters. Regional measurements had more predictive power than global WMH burden (e.g. frontal caps prediction with local features: ICC=0.67 CI=[0.53 0.77], global volume=0.50 CI=[0.32 0.65], intra-rater=0.44 CI=[0.23 0.60]).
Conclusion: Regional-zonal representation of WMH burden highlights similarities and differences between visual rating scales and raters. The bullseye infographic tool provides a simple visual representation of regional lesion load that can be used for rater calibration and training.
Keywords: Ageing; Location; Magnetic resonance imaging; Visual rating scales; White matter hyper intensities.
Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.