W9 is a peptide that abrogates osteoclast differentiation via blockade of nuclear factor-κB ligand (RANKL)-RANK signaling, which activates bone formation. However, W9 stimulated osteogenesis in osteoblasts and mesenchymal stem cells. The present study demonstrated that the W9 peptide promoted osteogenic differentiation of human adipose-derived stem cells (hAdSCs) even under non-osteogenic differentiation culture conditions. W9-treated hAdSCs exhibited several osteocalcin-expressing cells and great mineralization compared to the BMP2-treated hAdSCs, which suggests that the W9 peptide had potent osteogenic potential in hAdSCs. W9 treatment also markedly enhanced the phosphorylation of p38, JNK, Erk1/2, and Akt, and BMP2 treatment only enhanced the phosphorylation of p38 and Erk1/2 in hAdSCs. hAdSCs did not express the RANKL gene, but W9 treatment upregulated Runx2, Collagen type 1A1 and TGF receptor genes and increased Akt phosphorylation. These results suggest that the W9-induced potent osteogenic induction was attributed to activation of TGF and the PI3 kinase/Akt signaling pathway in hAdSCs.
Keywords: Differentiation; Mesenchymal stem cell; Osteogenesis; Peptide.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.