Background and aims: Understanding to what extent parasites affect host fitness is a focus of research on ecological interactions. Fungal parasites usually affect the functions of vascular plants. However, parasitic interactions comprising effects of fungal parasites on the fitness of lichen hosts are less well known. This study assesses the effects of the abundance of two highly specialized gall-forming fungi on growth of their two respective lichen hosts and tests whether these fungal parasites reduce lichen fitness.
Methods: The relative biomass and thallus area growth rates, and change in specific thallus mass of Lobaria pulmonaria and L. scrobiculata were compared between lichens with and without galls of the lichenicolous fungi Plectocarpon lichenum and P. scrobiculatae, cultivated in a growth chamber for 14 d. By estimating the thallus area occupied by the galls, it was also assessed whether growth rates varied with effective photosynthetic lichen surface area.
Key results: Plectocarpon galls significantly reduced relative growth rates of the lichen hosts. Growth rates decreased with increasing cover of parasitic galls. The presence of Plectocarpon-galls per se, not the reduced photosynthetic thallus surface due to gall induction, reduced relative growth rates in infected hosts. Specific thallus mass in the hosts changed in species-specific ways.
Conclusions: This study shows that specialized fungal parasites can reduce lichen fitness by reducing their growth rates. Higher parasite fitness correlated with lower host fitness, supporting the view that these associations are antagonistic. By reducing hosts' growth rates, these parasites in their symptomatic life stage may affect important lichen functions. This fungal parasite-lichen study widens the knowledge on the ecological effects of parasitism on autotrophic hosts and expands our understanding of parasitic interactions across overlooked taxonomic groups.
Keywords: Fungal parasites; Lobaria; Plectocarpon; gall-forming fungi; host fitness; lichenicolous fungi; parasitic interactions; relative growth rate; specific thallus mass.
© The Authors 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: [email protected].