Bacterial biofilms are a complex architecture of cells that grow on moist interfaces, and are held together by a molecular glue of extracellular proteins, sugars and nucleic acids. Biofilms are particularly problematic in human healthcare as they can coat medical implants and are thus a potential source of disease. The enzymatic dispersal of biofilms is increasingly being developed as a new strategy to treat this problem. Here, we have characterized NucB, a biofilm-dispersing nuclease from a marine strain of Bacillus licheniformis, and present its crystal structure together with the biochemistry and a mutational analysis required to confirm its active site. Taken together, these data support the categorization of NucB into a unique subfamily of the ββα metal-dependent non-specific endonucleases. Understanding the structure and function of NucB will facilitate its future development into an anti-biofilm therapeutic agent.
© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.