The human body is an integrated circuit between microbial symbionts and our Homo sapien genome, which communicate bi-directionally to maintain homeostasis within the human meta-organism. There is now strong evidence that microbes resident in the human intestine can directly contribute to the pathogenesis of obesity and associated cardiometabolic disorders. In fact, gut microbes represent a filter of our greatest environmental exposure - the foods we consume. It is now clear that we each experience a given meal differently, based on our unique gut microbial communities. Biologically active gut microbe-derived metabolites, such as short chain fatty acids, secondary bile acids, and trimethylamine-N-oxide (TMAO), are now uniquely recognized as contributors to obesity and related cardiometabolic disorders. However, mechanistic insights into how microbe-derived metabolites promote obesity are largely unknown. Recent work has demonstrated that the meta-organismal production of the bacterial co-metabolite TMAO is linked to suppression of beiging of white adipose tissue in mice and humans. Furthermore, the TMAO pathway is becoming an increasingly attractive therapeutic target in obesity-associated diseases such as type 2 diabetes, kidney failure, and cardiovascular disease. In this commentary we discuss recent findings linking the TMAO pathway to obesity-associated disorders, and provide additional insights into potential mechanisms driving this microbe-host interaction.
Keywords: adipose; diabetes; microbiome; microbiota; nutrition; obesity; trimethylamine N-oxide.