Hypothesis: The rheological control of suspensions is of key interest in the formulation design. A chemically cross-linked hydrophobically modified poly(acrylic acid) (HMCL-PAA), used as rheology modifier, is pH sensitive and shows swelling behavior above a critical pH due to the ionization of the acrylic acid groups. At low pH, HMCL-PAA suspensions are liquid and turbid. The binding of surfactants to HMCL-PAA, at low pH conditions, can result in significant changes on rheology and transparency of the polymeric suspensions, due to the swelling of the microgel particles.
Experiments: The influence of surfactants addition on the rheological properties and transparency of HMCL-PAA suspensions was determined. A systematic study was performed using different types of surfactants (ionic, non-ionic and zwitterionic).
Findings: The gelation efficiency of HMCL-PAA suspensions at low pH is strongly dependent on surfactant architecture: ionic surfactants are found to be much more efficient than non-ionic or zwitterionic surfactants. Ionic surfactants lead to a liquid-to-gel transition accompanied by an increase of transparency of the suspensions. Among the ionic surfactants, anionics show stronger interactions with the polymer. Also the surfactant hydrophobicity is relevant; the more hydrophobic the surfactant, the stronger is the binding to the polymer and thus the larger the particle swelling.
Keywords: Crosslinked polymer; Gelation; Hydrophobic association; Poly(acrylic acid) derivative; Polymer/surfactant association; Surfactant binding.
Copyright © 2017 Elsevier Inc. All rights reserved.