Operation Everest II: muscle energetics during maximal exhaustive exercise

J Appl Physiol (1985). 1989 Jan;66(1):142-50. doi: 10.1152/jappl.1989.66.1.142.

Abstract

To investigate the metabolic basis for the reduction in peak blood lactate concentration that occurs with maximal exercise after acclimatization to altitude, eight male subjects [maximal O2 uptake of 51.2 +/- 3.0 (SE) ml.kg-1.min-1] were acclimated to progressive hypobaria over a 40-day period. Before decompression (SL-1), at 380 and 282 Torr, and on return to sea level (SL-2) the subjects performed progressive cycle exercise to exhaustion. Analysis of muscle samples obtained from the vastus lateralis before exercise and at exhaustion indicated a pronounced reduction (P less than 0.05) in muscle lactate concentration (mmol/kg dry wt) at 282 Torr (39.2 +/- 11) compared with SL-1 (113 +/- 9.7), 380 Torr (94.6 +/- 18), and SL-2 (92.7 +/- 22). For the other glycolytic intermediates studied (glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, and pyruvate) only the increase in glucose 1-phosphate, glucose 6-phosphate, and fructose 6-phosphate were blunted (P less than 0.05) at 282 Torr. The reduction in muscle glycogen concentration during exercise was similar (P less than 0.05) for all environmental conditions. Although exercise resulted in reductions (P less than 0.05) in ATP and creatine phosphate averaging 30 and 51%, respectively, the magnitude of the change was not dependent on the degree of hypobaria. Inosine monophosphate was elevated (P less than 0.05) approximately 11-fold with exercise at both SL-1 and SL-2. These findings support the hypothesis that the lower lactate concentration observed at 282 Torr after exhaustive exercise is due to a reduction in anaerobic glycolysis.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Adult
  • Altitude*
  • Energy Metabolism*
  • Glycogen / metabolism
  • Glycolysis
  • Humans
  • Male
  • Muscles / metabolism*
  • Phosphocreatine / metabolism
  • Physical Endurance
  • Physical Exertion*

Substances

  • Phosphocreatine
  • Adenosine Triphosphate
  • Glycogen