Background: Estimating equations are recommended by clinical guidelines as the preferred method for assessment of glomerular filtration rate (GFR). The aim of the study was to compare population-based prevalence estimates of decreased kidney function in Germany defined by an estimated GFR (eGFR) <60 ml/min/1.73m2 using different equations.
Methods: The study included 7001 participants of the German Health Interview and Examination Survey for Adults 2008-2011 (DEGS1) for whom GFR was estimated using the Modification of Diet in Renal Disease study equation (MDRD), the revised Lund-Malmö equation (LM), the Full Age Spectrum creatinine equation (FAScre), the Chronic Kidney Disease Epidemiology Collaboration equations with creatinine and cystatin C (CKD-EPIcrecys), with creatinine (CKD-EPIcre) and with cystatin C (CKD-EPIcys). Bland-Altman plots were used to evaluate the agreement between the equations.
Results: Prevalence estimates of decreased kidney function were: 2.1% (CKD-EPIcys), 2.3% (CKD-EPIcrecys), 3.8% (CKD-EPIcre), 5.0% (MDRD), 6.0% (LM) and 6.9% (FAScre). The systematic differences between the equations were smaller by comparing either equations that include serum cystatin C or equations that include serum creatinine alone and increased considerably by increasing eGFR.
Conclusions: Prevalence estimates of decreased kidney function vary considerably according to the equation used for estimating GFR. Equations that include serum cystatin C provide lower prevalence estimates if compared with equations based on serum creatinine alone. However, the analysis of the agreement between the equations according to eGFR provides evidence that the equations may be used interchangeably among persons with pronounced decreased kidney function. The study illustrates the implications of the choice of the estimating equation in an epidemiological setting.
Keywords: Epidemiology; Prevalence; Renal dysfunction; eGFR equation.