Following brief stimulation of an afferent pathway, the bag cell neurons of Aplysia undergo a dramatic change in excitability, resulting in a prolonged discharge of spontaneous action potentials. During the discharge, the action potentials of the bag cell neurons become enhanced in height and width. The afterdischarge triggers release of neuroactive peptides that initiate egg-laying behavior in this animal. Evidence suggests that changes in excitability of the bag cell neurons may be mediated by activation of protein kinase C (PKC) and cAMP-dependent protein kinase (cAMP-PK). PKC activators, such as the phorbol ester TPA (12-O-tetradecanoyl-13-phorbol acetate), enhance the amplitude of action potentials in isolated bag cell neurons in cell culture. These agents act by unmasking a previously covert species of voltage-dependent calcium channel resulting in an increase in calcium current. In the accompanying paper (Conn et al., 1989), we showed that H-7, a protein kinase inhibitor, inhibits the effect of TPA, and is a selective inhibitor of PKC relative to cAMP-PK in these cells. We now report that another PKC inhibitor, sphinganine, also inhibits the effect of TPA on action potential height and calcium current in cultured bag cell neurons, and that N-acetylsphinganine, an inactive sphinganine analog, fails to inhibit the effects of PKC activators. Although both H-7 and sphinganine prevent the effects of TPA when added prior to TPA addition, neither compound reverses the effects of TPA when added after the action potentials have already become enhanced by TPA.(ABSTRACT TRUNCATED AT 250 WORDS)