Internet-based surveillance methods for vector-borne diseases (VBDs) using "big data" sources such as Google, Twitter, and internet newswire scraping have recently been developed, yet reviews on such "digital disease detection" methods have focused on respiratory pathogens, particularly in high-income regions. Here, we present a narrative review of the literature that has examined the performance of internet-based biosurveillance for diseases caused by vector-borne viruses, parasites, and other pathogens, including Zika, dengue, other arthropod-borne viruses, malaria, leishmaniasis, and Lyme disease across a range of settings, including low- and middle-income countries. The fundamental features, advantages, and drawbacks of each internet big data source are presented for those with varying familiarity of "digital epidemiology." We conclude with some of the challenges and future directions in using internet-based biosurveillance for the surveillance and control of VBD.