Chinese indigenous pigs in Zhejiang Province are well known for their high fecundity. In order to verify breed subdivision at the genomic level, we investigated genetic diversity and population structure of seven breeds and made comparisons with three Western pig breeds using next-generation sequencing data. Parameters obtained from allelic richness and proportion of polymorphic markers indicated that the genetic diversity of the Chinese indigenous pigs was higher than that of the Western pigs, with the highest and lowest values found in the Chaluand and the Landrace pigs respectively. Both neighbor-joining tree and principal components analysis could distinguish breeds from one another and structure analysis showed less differentiation among Western pigs than among the Chinese pigs. The average linkage disequilibrium decay over distance was significantly less in the Chinese pigs compared with the Western pigs, ranging from 188.2 to 280.6 kb for the Chinese pigs and 680.3 to 752.8 kb for the Western breeds and showing an average r2 threshold value of 0.3. Results obtained from high-density SNP comparison over the whole genome on genetic diversity and population structure were in agreement with the current breed classification of the pigs in Zhejiang Province. More importantly, the results presented here advances our current understanding of the genomic biology of Chinese indigenous pigs in Zhejiang Province and allows for implementation of conservation strategies in additional breeds.
Keywords: genetic differentiation; linkage disequilibrium; next generation sequence; pig genome.
© 2017 Stichting International Foundation for Animal Genetics.